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Abstract

The National Weather Service interpolates snow conditions over numerous
hydrologic basins to obtain snow water equivalent estimates and associated
errors for gridded fields with 30 arc second resolution. Solving problems of this
scale involves an enormous number of computations and data input and output
operations. Using sequential implementation to obtain gridded estimates may
require execution times ranging from hours to days. Thus it becomes infeasible
to solve large problems of national scale interactively or in a time frame suitable
for near real time forecasts and flood warnings.

In this paper we discuss some techniques used to speed-up the computation
by partitioning physical space into sub-domains. Spatial operations relating
to each sub-domain are executed over a distributed heterogeneous memory
architecture. Results from various strategies for distributing computations are
discussed. A performance analysis is presented for the parallel implementation
of snow estimation and updating system of the National Weather Service. A
new Mirror-Image Round-Robin(MIRR) data partition technique is introduced.
Many of these techniques have applications in developing high performance and

distributed geographic information systems(DGIS).
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1 Introduction

You are watching your favorite TV program when an unexpected voice interrupts
with the following message “The National Weather Service(NWS) has issued a severe
flood warning for Fort Wayne. A crest of 9.50 feet above flood stage for the Maumee
River at Anthony Boulevard is expected. The Red Cross, Civil Defense, Lutheran
Services and the Salvation Army are preparing for major ..., please go to the nearest
...7. This could have been a real scenario, according to a study of flood damages at
Fort Wayne, Indiana [CMS85].

NWS maintains a set of applications to estimate snow—water equivalent (SWE)
that are used to issue water forecasts and flood warnings for the country. SWE is
used by NWS hydrologists to quantify the stream flow, to forecast water supplies for
the United States and to manage this resource for various competing needs ( e.g.,
domestic use, irrigation, hydro-power, etc). Government and state agencies rely on
these forecasts to prepare for flood disasters and issue early flood warnings.

NWS applications use multi source data to interpolate snow water equivalent
over large areas [HRA95, Car95]. These data are obtained by satellites, low flying
aircraft, ground based sensors and sampling crews. A spatial model is used to obtain
a gridded SWE over larger areas and to obtain areal snow water equivalent estimates
over a river basin. Each areal estimate has an associated uncertainty, expressed in
terms of its associated mean-squared prediction error. The accuracy with which areal
snow—water equivalent is estimated is critical since lives are involved, economic losses
due to floods are enormous and the need to manage water resources for the competing
needs of irrigation, domestic use and hydro-power are crucial. It is also imperative
that the snow-water equivalent estimation is done accurately in near real time. The

National Operational Hydrologic Remote Sensing Center (NOHRSC) maintains a



Snow Estimation and Updating System (SEUS) that is used to compute gridded
SWE. SEUS is a software system developed by NWS to operate on the Geographical
Resources Analysis Support System (GRASS). Readers can find more details on SEUS
and snow estimation problems in [CDCC95, Day90, MSH*"93, MHH95, FSS*95].
In this paper we will focus on the spatial computational aspects of SEUS and pro-
pose a new mirror-image round-robin data partition technique and a next generation
Parallel SEUS (PSEUS). Section 2 describes the application domain and the data
types used by SEUS and the spatial interpolation methodology. Section 3 describes
the computational problems associated with gridded snow estimation using SEUS.
Section 4 describes data partitioning, a parallel version of SEUS (PSEUS). Section
5 presents an analytic and experimental evaluation. Section 6 is a summary and

discussion of current and future research.

2 Application Domain: Snow Estimation

The NWS uses a spatial prediction model to derive gridded snow water equivalents
over many hydrologic basins in the United States. The model relies on spatial correla-
tion among the data and geostatistical techniques to estimate SWE where no observed
data exist. A detailed review of the SEUS methodology can be found in [Day90]. The
gridded snow-water equivalent is used as input to a snow ablation and accumulation
model that uses observed temperature and precipitation to simulate snow cover con-
ditions [And73]. [MSH'93] and [CDCC95] describe the use of ground and airborne
data to compute gridded estimates of snow—water equivalent and associated standard

deviates.



2.1 Data types

From a modeling perspective, the data used to interpolate gridded snow water equiv-
alent fall into two categories: point and line data. From a computational point of

view however, the data can be classified into three types: areal, point and line data.

2.1.1 Areal Data

The NWS divides the conterminous US into 12 hydrologic regions served by NWS
River Forecast Centers (RFC). Each RFC region is sub-divided into as many as 800
hydrological basins.

Each basin in this study has a certain number of ground data collection points and
airborne snow survey flight lines. Figure 1 depicts the relationship between all data
types. The Colorado Basin RFC, for example, has over 200 NWS forecast basins. We
will use notation R;(i = 0,...,r —1) to represent RFCs, where r is the total number of
regions. Basins will be represented using Ax(k = 0,...,nb — 1), where nb is the total

number of basins in region i.

2.1.2 Line Data

Line data are SWE observations obtained from a network of over 1800 flight lines. The
NOHRSC uses low—flying aircraft (operated by NOAA’s commissioned Officer Corps)
to measure natural terrestrial gamma radiation before the snow season and during the
snow season. The technique is based on ° K 238 7,29 T'[ isotopes radiation attenuation
due to the water mass in the snow cover [Fri82, PCV80, CV80, CVG85|. Each flight
line is approximately 16 km long, 300 m wide. Each flight line is subdivided into one
or more segments.

The technique used to estimate SWE for each basin Ay uses flight lines Fj(l =



0,..,nfl —1), where nfl is the total number of flight lines that are within the basin

itself or within adjacent basins.

2.1.3 Point Data

Point data are SWE observations obtained from a ground-based network composed
of snow course and automated snow data telemetry (SNOTEL) sites. [MSH"93] re-
ported that the Natural Resources Conservation Service (NRCS) collects these ground
data at over 2000 locations across the west. Snow course data are obtained by sam-
pling snow and measuring its water content. We will use G,,,(m = 0,...,ng — 1) to
denote the ground points in each basin Ay, with ng being the total number of ground
points used in a basin’s SWE computation. Each basin Ay is divided into a grid of
points GR(s = 0,...,npt — 1) where npt is the total number of points in the grid.
These are the points for which snow water equivalent is to be computed. They will
be referred to as grid points. The number of grid points in each basin is proportional

to the basin size.

2.2 SWE Interpolation

Snow—water equivalent is estimated using simple kriging. [Cre91] describes ordinary
kriging, or optimal prediction, as making inferences on unobserved values of a random

process Z(s;). These values are modeled using

Z(si) = (Y(s1) — p(si)) /o (si), (1)
where Y (s;) is a non-standardized SWE value, Z(s;) is a standardized SWE for both

ground point and flight data. u(s;) and o(s;) are the mean and standard deviation

of SWE at location s;.
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Figure 1: US map and relationship between data types (a) Basins within
one RFC (b) Ground and Flight line data (Courtesy Don Anderson, NWS,
NOHRSC).

Ground and airborne data are used to compute the best linear predictor of Z(s,) :

npt—1

Z(su) = Y MZ(ss) 2)
i=0
where \; are the simple kriging coefficient estimates. The vector A is computed

as follows:

A=Y1C,,, (3)

where

Cs, = (cov(Z(su), Z(s0)), - - ., coV(Z(Su), Z(Snpt—1)) (4)



and ¥ is the n x n matrix whose (4, 7)"" element is cov(Z(s;), Z(s;)). The covariances
are modeled using a distance weighted function.
For a basin Ay whose grid points are GR,, s = 0,...,npt — 1, the mean squared

prediction error of the basin areal SWE estimate is derived by

o 2o 37 a(s1)a(sy) (cov (Z(si), Z(sy)) — Cy 3 ' Cyy) .
O'YSk - (npt)2 ’ ( )

where G(sk) is the estimate of the standard deviation for a grid point s,. More

details about the interpolation can be found in [CDCC95] and [Cre91].

3 Serial Implementation of SEUS: SSEUS

The computation of the estimated SWE at each grid point can be broken down into
seven steps, S1 through S7, shown in figure 2. From these computations we also
obtain the total basin SWE and associated uncertainty for each basin Aj,. These
steps are representative of serial implementation such as serial SEUS(SSEUS).

To determine the run time of the SEUS model as the characteristics of its instances
change, we have used profiling, analysis, and measurement. Table 1 shows the number
of iterations for each of the modules S1 through S7. We have analyzed the code and
expressed the worst case number of iterations as a function of the number of ground
points (ng), the total number of flight lines (nf), the total number of segments per
flight line (ns;), and the total number of grid points (npt) for each basin A;.

The time complexity shows the run time as a function of the number of ground
points(ng), the number of flight lines (nf), the number of segments per flight line
(ns), and the number of grid points (npt) for which snow water equivalent is to be

computed. In our set up, npt is always very large compared to nf, ns; and ng.



S0: do S1, S2, S3, S4, S5, S6, S7 where:

S1: Input
[S1.1] input ground points data.
[S1.2] input flight line data.

[S1.3] input grid points data.

S2: Standardize Means
[S2.1] standardize ground point means.
[S2.2] standardize flight line means.

[S2.3] standardize grid point means.

S3: Compute covariance Matrix (X)
[S3.1] compute Cov(Flight lines , Flight lines).
[S3.2] compute Cov(Flight lines , Ground points).

[S3.3] compute Cov(Ground points , Ground points).

S4: Compute inverse of covariance matrix(> 1)

S5: Compute Covariance Matrix with Grid points.
[S5.1] Compute Cov(Flight Lines, Grid points).

[S5.2] Compute Cov(Ground points, Grid points).

S6: Compute Gridded and total SWE estimates.

S7: Compute Total standard deviation

Figure 2: Pseudo algorithm to compute a single Basin (A;) SWE and total
variance.

For example, the small Animas river basin used by [CDCC95], contained 2681 grid
points, 13 ground points and 4 flight lines. The numbers of segments per flight line
were 47, 62, 65 and 61 for flight lines 1, 2, 3 and 4 respectively. The number of grid

points is proportional to the basin surface size. The relation npt > ns; > ng > nf,



Table 1: Serial SEUS worst and average time complexities for each module.
Worst case is expressed as a function of actual variable ranges. Average
case is expressed as a function of n which is a combination of all variable

ranges for a given basin A, or a region R;, n = min(npt,ns;,nf,ng).

Module Worst case Average (n) | Average (npt)

S1 g(EH, ns; + ng + npt) O(n?) O (npt)
S2 9(iL, ns; + ng + npt) O(n?) O(npt)
S3 | 935 nsi” + ng ¥, +ng?) O(n*) O(1)

S4 9(iL, ns; + ng + npt) O(n?) O(npt)
S5 g(npt S ns; + (ng) (npt)) O(n*) O(npt)
S6 g(npt(nf +ng)) O(n?) O(npt)
S7 9(5((npt)?(ng +nf)°) O(n") O (npt?)

holds for all basins having flight lines. Table 1 shows the time complexity only for a
single basin in one RFC. Using the same algorithm for multiple basins and multiple
regions, the time complexity becomes an O(npt*) problem.

Serial SEUS executable was profiled using gprof on an HP 735-99Mhz running
HP-UX 9.05. Execution profiles enabled us to see the number of calls to each module
and its descendant functions. It also showed an approximation of the execution time
for each module and descendants. A partial listing of the results where nf and ng
were held constant is shown in table 2. The results suggest that computing the total
variance represents the largest portion of the execution time. Our analysis of the time
complexity concurs with the results of profiling.

Examining the function that computes the total standard deviates (S7 is imple-
mented as compute_area_std_deviate() as shown in figure 3), we found that we

have a time complexity largely dependent on the total number of grid points. Our



Table 2: Results of gprof on the serial version of SEUS for small grid sizes
(times are in seconds). Each value is a mean of 20 repetitions. A 300
second sleep time follows each run to take into account different system

loads.

npt=100 npt=200 npt=1000 npt=2681

Module | T(sec) | %Total | T(sec) | %Total | T(sec) | %Total | T(sec) | %Total

S1 0.186 16.87 0.189 6.23 0.203 0.33 0.200 0.05
S2 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00
S3 0.186 16.87 0.192 06.32 0.185 0.30 0.179 0.04
S4 0.003 0.27 0.004 0.12 0.002 0.00 0.002 0.00
S5 0.121 10.93 0.231 7.59 1.166 1.87 3.160 0.72
S6 0.011 00.95 0.020 0.66 0.123 0.20 0.319 0.07

S7 0.590 53.47 2.396 78.92 | 60.705 97.31 | 436.171 99.12

Total 1.102 100.00 3.036 100.00 | 62.385 100.00 | 440.039 100.00

experimental data show that this is actually an O(npt?) problem, since ng and nf are
very small compared to npt. We can take advantage of the symmetry and loop only
on %nth. Also Since ¥ 7! is a constant for any combination 4, j, we can pre-compute

C,; 71 or ;X1 before starting to loop on i or j.

4  Parallel implementation of SEUS: PSEUS

In section 3, we have shown that the module S7, which is implemented by the com-
pute_area std _deviate() function, is the slowest of all modules. This function
computed &f/Sk for each basin. The function was slightly modified to run on a net-
work of workstations, using a master/slave model.

This model is used to execute compute_area std _deviate() in a distributed
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// Compute 6 = sumsig .
double compute_area_std_deviate(double ¢, double *plat, double *plon,
double *sig, double **sigmainv, double *Cj;, double *C})
{
double sumsig,rho,dist;
int i,j;
sumsig=0
for (j=0;j < npt; j++ ) {
// mul_mat_vec() is a matriz x vector routine.
lambda = mul_mat_vec(sigmainv,Cj); /] A=C; St
for (i=j+1;i < npt;i++ ) {
// Compute Distance between two points i with a latitude plat]i]
// and a longitude plon[i] and a point j with latitude plat][j]
// and a longitude plonlj].
dist = distance( plat[j],plonl[j], plat[i]; plon][i]);
// Compute the modeled cov(Z(s;), Z(s}))
rho = c*exp(d*dist);
if ( rho == ¢ ) rho=1;
// mul_vec_vec() is a vector x vector routine.

sumsig = sumsig + sig(i)*sig(j)*(rho - mul_vec_vec(lambda,C};));

sumsig = 2*sumsig/n*n;
return sumsig;

}

Figure 3: Serial Version of stub computing total variance for a basin.
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scheme on a network of workstations. In this model, one host was designated as the
master, while the rest of the hosts were designated as slaves executing tasks on behalf
of the master. Figure 5 depicts the data flow among workstations. The algorithm
used by the master consists of the serial modules S1, S2, S3, S4, S5, S6, S8, S9. S1
through S6 are as explained in the serial implementation of gridded SWE. S8 and S9

are shown in figure 4.

S8: Send the data to all hosts
[S8.1] Configure the virtual machine
[S8.2] Start all slaves with compute_area_std_deviate()

[S8.3] Broadcast all data required to compute (Af%/Sk

S9: Receive partial results from each host
[S9.1] Wait until all results are in

[S9.2] Reassemble 67, from all hosts

Figure 4: Master modules involved in parallelism.

Modules S1 through S6 output is used as input for module S7. Once the master is
done executing modules S1 through S6, it farms out S7 to the slaves. Each individual
slave determines the physical domain that will constitute its computation domain and
runs S7. The master and the slaves constitute a virtual machine. At any one time,
all slaves run exactly the same copy of the code (S7). This task has an identifier that
we will use interchangeably with processor identifier. The task identifier for processor
1 will be represented using P;.

Our goal is to compute &%sl‘ as shown in section 3. We will decompose &%sl‘ to
obtain equation( 6)

~9 225,-;10\11(131‘)

Mo ST P (6)
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\if(PZ) is the non weighted portion of 6,2/51( computed by processor P; and P is the to-
tal number of processors used to compute 6,2/51(. W(P)) can be further refined to be ex-
pressed in terms of the domain over which it is computed. The grid is partitioned row-
wise to compute U(P;) = DB Z?ﬁtkfl 6 (sk)a(si)( cov(Z(s;), Z(sj)) — Cs, X' Cyy)

Rows row; and row, are the lower and upper bounds of the row values from the

grid. These are not necessarily consecutive as we will show.

Slavel.Result

——

Saved Slave0.Result

Figure 5: Master/Slave PSEUS model and data flow.

Once each processor receives its data from the master, it computes W(P;) only over
the portion of the grid which constitutes its partition domain. Three strategies were
used to partition data among processors. These strategies are:(1) Contiguous Row
Blocking(CRB), (2) Round-Robin(RR) and (3) Mirror-Image Round-Robin(MIRR).
The reader can find a survey of other partitioning techniques for GIS data in [SL95,
SRT*95, 1SS86, KGGK94]. In all of our strategies, the basin is represented as an

npt X npt grid space.
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// Computes bounds for consecutive rows assigned to a processor.
getrowsl(int F;, int npt, int P, int *lower_bound, int *upper_bound )
{
// compute upper and lower bound range of rows
// allocated to each processor P,
if (npt > 0 && P, < P ) {
xlower_bound = P;x(npt/P) ;
if ( P, <P-1)
xupper_bound = *lower_bound + npt/P -1;

else *upper_bound = npt - 1; // last processor gets the rest

Figure 6: Contiguous Row Blocking partition strategy: allocates equal rows

to all processors.
4.1 CRB

In CRB strategy , we attempt to allocate an equal number of consecutive rows to
each processor using the stub of figure 6. Using this scheme, each processor P{P; =
0,..,P — 1} is allocated (npt + P) rows (where = is the integer division operator).
Processor, Pp_4, is allocated an additional npt — (P — 1)(npt = P) rows. Figure
7(a) illustrates this partition method. In this strategy, each processor P; is allocated
rows Rj, R; € [P;(npt + P), (npt = P)(P; + 1) — 1]. The number of cells allocated to
processor P; is given by equation ( 7):

Pe— ((npt + P)(2npt — (21;’Z + 1) (npt + P) — 1)) 7)

The total number of cells processed by the virtual machine is given by equation

14
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Figure 7: Partition of a 20 x 20 grid among 5 processors Py through P,(a)
Contiguous Row Blocking (b) Round—Robin (c¢) Mirror-Image Round-
Robin.

We use a grid size of 20 npt x 20 npt to illustrate this partition strategy. We
obtain the results shown in table 3. The results are also expressed as a proportion

of the total number of cells processed (p = % X 100).

Table 3: Total number of cells and proportion allocated to each slave(npt =
20, P =5,T, = 190).

20.0
20.0
20.0
20.0

20.0

CRB strategy RR strategy MIRR strategy
Processor | # of Cells | % Total | # of Cells | % Total | # of Cells | % Total
Py 70 36.84 46 24.21 38
P, 04 28.42 42 22.11 38
P, 38 20.00 38 20.00 38
Ps 22 11.58 34 17.89 38
P4 6 3.16 30 15.79 38
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We note that this allocation scheme leads to a load imbalance where processors
do not get equal work. Processors with a low identifier have a high number of cells
allocated to them. In this example, when the virtual machine is configured with
5 hosts, Py processes 37 percent of the total cells while P, processes only 3 percent.
Thus a few processors do most of the computations while the others spend most of the
time waiting for the other processors with a larger cell allocation to finish computing

their portion ¥(P;) of 6)2/51(.

4.2 RR

To distribute the load among all slaves, CRB partition strategy was refined to obtain
Round Robin partition strategy. Figure 7(b) shows how the grid space is partitioned
using the algorithm of figure 8. In this strategy, each processor P; is allocated rows

=0,1,...,(npt + P) — 1. Each of the remaining r = (npt modulus P)
rows are allocated to processors 0 to » — 1. Thus, each processor P, is allocated the

total number of cells given by equation ( 9):

P(d—1)d

5 + a(npt — 1 — P, — d(P)), (9)

Pic=d(npt —1— P;) —

where P,=0,....,.P—1

d=npt + P
a=1VP <r
OAZO,VPZ'ZT.

Table 3 shows an example of this allocation scheme for npt=20. We note a
significant improvement in load balance. The difference in cell allocation and thus in

load of all processors in the virtual machine has been reduced but not eliminated.
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// Round--Robin Partition strategy: Given npt grid points and
// P processors, get rows assigned for processor F,. Rows
// are stored in the array rows.
getrows2(int F;,int npt, int P,int *rows)
{
int d,r,j;
if (P==0) P =1;

d

(npt) / P ;

r= (npt) % P

[

for ( j=0; j < d; j++ ) {
rows[jl = P, + j * P;

¥

if (r >0 & P, < r)

rows[j++] = P + j*P ;

rows[jl=-1;

Figure 8: Round—-Robin partition strategy.
4.3 MIRR

We further refine RR partition strategy to achieve further load balance with Mirror
Image Round Robin partition strategy. MIRR allocates each processor P; one row
from the top and its corresponding complement from the bottom of the grid. The
stub of figure 9 shows the algorithm used for this strategy. Figure 7(c) shows the
cell allocation to each processor. MIRR has effectively achieved the load balance as

shown in table 3.
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// MIRR partition strategy: Given npt grid points and P processors,
// get rows assigned for processor F;. Rows are stored in the
// array rows.
getrows3(int F;,int npt, int P,int *rows)
{
int d,r,top,bottom, j=0, s=0, thisrow;
if (P==0) P =1;
d= (npt) / P ; r= (npt) % P ;
top=F,-P ; bottom=npt - 1 - P, + P;
rows[jl=-1;
while ( s < d ) {
if ( s%h2 == 0 ) { top += P; thisrow=top; }
else { bottom -= P; thisrow=bottom; }
rows[jl=thisrow;
jH+; s+t
}
if (r !=0 & P, < r ) rows[j++]= top+P;

rows[jl=-1;

Figure 9: MIRR partition strategy.
5 Evaluation

In this section, we will evaluate the effects of the various data partitioning strategies
on the computational and communication costs for parallel SEUS. We use speedup

metric (ratio of serial run times to the parallel run times) and the communication

18



overhead as a measure of performance.

5.1 Analytic Evaluation

We will restrict our analysis only to the slowest module (S7) which is the only module
that was parallelized. Let T,,, and T,.,. designate the communications and the
computations costs respectively for module S7. The computation cost is expressed as
a function of the total number of grid cells allocated to each processor P;. Figure 3

shows the core of the function that models &%sl‘ for module S7.

5.1.1 Cost of Serial SEUS

The serial version assigns the entire upper half of the matrix to one processor. The
diagonal points (7,7) are not iterated over. The total number of cells over which we
iterate is the count of all cells in every row minus the diagonal cells. Thus, for serial

SEUS:

npt—1
Teate(SERIAL) = > (npt — 1 — row). (10)

row=0

Using the summation for arithmetic series, equation( 10) yields the cost given by( 11):
Lo o
Teac(SERIAL) = §(npt — npt). (11)

The speedup metric for each of the three partition strategies is given by

Touo(SERIAL)
Toate(PARALLEL)

speedup =

19



5.1.2 Cost of PSEUS Using CRB

Using CRB data partition method as shown in figure 7, the worst load is assigned

to processor Fy. In this case T4, is given by equation 13:

npt
5 —1

Tewc(CRB) = Z (npt — 1 — row) (13)

row=0

(2P — 1)npt* — P npt
= 5 p? : (14)

Using equations ( 11) and ( 14) , we obtain the speedup of equation ( 15) for CRB.

pP? P
N —. (15)

speedup(CRB) =~ T

5.1.3 Cost of PSEUS Using RR

In the case of RR, each processor is allocated rows P; + P j where j =0, ..., % — 1.
The maximum load is seen for processor Py = 0. Thus
|
Tewc(RR) = > (npt—1— P row) (16)
row=0
1 npt npt
= ——(npt -1 pt —1) — P(— — 1 1
5 p (npt =1+ (apt —1) = P(=5- —1)) (17)
1
= ﬁ(nth + (P — 2)npt). (18)

If P does not divide npt exactly (npt modulus P # 0), P, is allocated an addi-

tional P — 1 cells:

Toue(RE) = 55 (npt” + (P = 2)pt) + (P 1), (19)

Applying this computation cost, we obtain the speedup for RR as given by equa-
tion ( 20):

for npt modulus P =0

npt? — npt

speedup(RR) = npt2 + (P — 2)npt

(20)
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for npt modulus P # 0

npt? — npt

speedup(RR) = P
speeduplRR) = e P~ 2ynpt + 9P (P = 1)

(21)

In both cases, speedup(RR) ~ P for very large npt.

5.1.4 Cost of PSEUS Using MIRR

In the case of MIRR, row allocation to each processor progresses from both the top

and the bottom of the grid to the mid-point. Thus
Teae(MIRR) = T.yc(bottom) + Teq(top). (22)

where T,y (bottom) and T,u.(top) are equal to the number of cells assigned to P
from the bottom and top of the grid respectively. From the top, rows Py + P j(j =
0,..., "Tift — 1) are assigned. The rows allocated to Py from the bottom are npt — 1 —

Py — P j. We derive equations ( 23), ( 7?) and ( 25) for P, = 0.

e npt modulus 2 P = 0:

npt? — npt

Tcac MIRR) = —. 23
(MIRR) =" (23)

e npt modulus 2 P # 0 and npt modulus P # 0:

pt? — npt — 2 P

Toue( MIRR) = 222 1P . (24)

2 P

e npt modulus 2 P # 0 and npt modulus P = 0:

pt? + (P — 1)npt — 2 P

To(MIRR) = P (2= Dnw . (25)

2P

The speedup obtained for each case is given by equations ( 26), ( 27) and ( 28).
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e npt modulus 2 P = 0:

Speedup = P. (26)

e npt modulus 2 P # 0 and npt modulus P # 0:
P(npt? — npt)

Speedup = : 27
peetup npt? — npt — 2 P (27)
e npt modulus 2 P # 0 and npt modulus P = 0:
P(npt* — npt
Speedup = (rp npt) (28)

npt? + (P — 1)npt — 2 P’
In all cases, for large npt, speedup(MIRR) ~ P.
Our analysis shows that both MIRR and RR achieve a better load balance and
thus a higher speedup when compared to CRB. MIRR outperforms RR for small
even "T{)t. MIRR and RR perform the same for ”T{’t >> 1. Table 4 summarizes the

results of the computational cost and speedup resulting from using each of the data

partitionning strategies with PSEUS.

Table 4. Costs and speedup of PSEUS for each partition strategy.

Strategy Cost speedup | speedup
L .

SERIAL 5 (npt? — npt) 1 1
orp|  Egrrw| gl g
RR | 55 (npt? + (P — 2)npt) P 2
MIRR g—f,f(npt —1) P P

5.2 Communication Overhead

In this parallel implementation of SEUS, there are communications of data only be-

tween the master and its slaves. No communications take place among the slaves.
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Figure 10: Communications and computations timing for PSEUS.

The master performs the initial computations then broadcasts the data to all
slaves which in turn perform other computations and send back the results to the
master. The master assembles the results into &f/Sk. Hence the master is said to be
blocking: it can not progress until all the results from all slaves have come back.
Figure 10 illustrates the timing of events in this type of cooperative processing. Each
of the three partition strategies has the same basic communication cost 1.,, = npt.
Since the computation cost is O(npt?) and the communication cost is O(npt), the
communication overhead is O(nipt). Thus as npt becomes large, the overhead drops

significantly.
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5.3 Experimental Evaluation
5.3.1 Material and Methods

We have implemented PSEUS using the Parallel Virtual Machine Libraries version
3.3.6 [GBD'93]. PSEUS was tested on various platforms (Sun running Sun-OS
or Solaris, Intel X86 running linux, IBM RS/6000 running AIX 3.25 and HP 9000
running HP-UX 9.05). PSEUS was tested through a series of 9866 runs on HP
9000/700 series connected to the NWS snow survey Ethernet based local area network.
The number of grid points(npt) and the number of processors(P) were among the
factors that we have varied during this study. Our measurements consisted of the
execution times for various modules and the values of 632/51( that were compared with
a version of SEUS implemented in SAS version 9.07 by Steve Carroll [CDCC95]. We
have estimated the communication cost T,,, by subtracting the computation time
of o4 from the total round-trip time which included the communication and the the
computation times. We computed the communication overhead, 7 = % We also
counted the volume of network traffic that was generated and the total number of

collisions that occurred during our trial. Data analysis was performed using SAS 9.07

on a SparcStation 10/54.

5.3.2 Results and Discussion

Figure 11 shows the resulting increase in speed when PSEUS is distributed among
1,2,3,4 or 5 processors for a grid size of 10000 x 10000. RR and MIRR strategies result
in a four fold speed increase, compared to the serial version. The increase in speed
resulting from partition strategy RR and MIRR is significantly higher than that of
CRB partition strategy. We also note that the increase in speed is a function of the

problem size and the number of processors used(figure 12).
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Figure 11: Relative speedup of PSEUS using three data partition strate-
gies. The speedup is the ratio of PSEUS/SSEUS execution times for
npt=10,000.
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Figure 12: Speedup as a function of problem size and the number of pro-

cessors for data MIRR partition strategy.
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Both RR and MIRR strategies however, require additional storage for row bounds
since rows are not allocated in consecutive order. MIRR allocates rows in an unsorted
order. This may impact locality when non—associative cache is used. The algorithm
could be improved further by generating the rows in sorted order without additional
overhead of a sort routine. CRB partition method has the disadvantage of load im-
balance. However, this method may be useful in heterogeneous architectures. CRB
or a variation of RR strategy (i.e., with different stride values) can be used in com-
bination with a weight function to allocate a larger number of cells to faster slaves
and a lower number of cells to slower hosts or when executing PSEUS on networks
of workstations connected via slower and busier data networks. It may also be used
to dynamically change the number of cells allocated to a given slave while it is exe-
cuting by farming out portions of its computational domain when CPU load exceeds
a certain threshold. The communication overhead 7 is shown in figure 13 for MIRR
when the total number of processors P = 5.

We note that 7 is very high for small hydrologic basins and extremely small for
large basins . However the smallest basin has 2681 grid points. Thus PSEUS scales

well as the problem size and the resources allocated to solve it increase.

6 Conclusion

We have shown that some of the spatial interpolations and geographic information sys-
tems analyses can be parallelized efficiently using distributed memory architectures.
Various techniques from domain decomposition can be used to partition spatial data
among processors to achieve higher performance of applications. A new partition
technique called Mirror Image Round Robin (MIRR) achieves load balance. Data

partitioning algorithms should be considered carefully in order to achieve acceptable
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Figure 13: Communication overhead(7) as a function of the problem size

and the number of processors.

performance since there seems to be tradeoffs between the partition strategies. MIRR
strategy may be suitable for homogeneous architectures, while CRB and RR strategies
may be more suitable for heterogeneous architectures.

Our future work will focus on applying some of these techniques to spatial inter-
polations and neighborhood analysis in an operational environment. A variation of
the same techniques used in PSEUS could be applied to some GRASS routines (e.g.,
to distribute data for CPU and I/O intensive operations). PSEUS is still a serial
algorithm, so we will be examining ways to change the computation algorithm itself
to exploit the parallelism. General purpose libraries for distributed spatial operations

could ease the path towards a high performance distributed GIS architecture.
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