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1 IntroductionYou are watching your favorite TV program when an unexpected voice interruptswith the following message \The National Weather Service(NWS) has issued a severeood warning for Fort Wayne. A crest of 9.50 feet above ood stage for the MaumeeRiver at Anthony Boulevard is expected. The Red Cross, Civil Defense, LutheranServices and the Salvation Army are preparing for major . . . , please go to the nearest. . . ". This could have been a real scenario, according to a study of ood damages atFort Wayne, Indiana [CM85].NWS maintains a set of applications to estimate snow{water equivalent (SWE)that are used to issue water forecasts and ood warnings for the country. SWE isused by NWS hydrologists to quantify the stream ow, to forecast water supplies forthe United States and to manage this resource for various competing needs ( e.g.,domestic use, irrigation, hydro-power, etc). Government and state agencies rely onthese forecasts to prepare for ood disasters and issue early ood warnings.NWS applications use multi{source data to interpolate snow{water equivalentover large areas [HRA95, Car95]. These data are obtained by satellites, low yingaircraft, ground based sensors and sampling crews. A spatial model is used to obtaina gridded SWE over larger areas and to obtain areal snow{water equivalent estimatesover a river basin. Each areal estimate has an associated uncertainty, expressed interms of its associated mean-squared prediction error. The accuracy with which arealsnow{water equivalent is estimated is critical since lives are involved, economic lossesdue to oods are enormous and the need to manage water resources for the competingneeds of irrigation, domestic use and hydro-power are crucial. It is also imperativethat the snow{water equivalent estimation is done accurately in near real time. TheNational Operational Hydrologic Remote Sensing Center (NOHRSC) maintains a2



Snow Estimation and Updating System (SEUS) that is used to compute griddedSWE. SEUS is a software system developed by NWS to operate on the GeographicalResources Analysis Support System (GRASS). Readers can �nd more details on SEUSand snow estimation problems in [CDCC95, Day90, MSH+93, MHH95, FSS+95].In this paper we will focus on the spatial computational aspects of SEUS and pro-pose a new mirror-image round-robin data partition technique and a next generationParallel SEUS (PSEUS). Section 2 describes the application domain and the datatypes used by SEUS and the spatial interpolation methodology. Section 3 describesthe computational problems associated with gridded snow estimation using SEUS.Section 4 describes data partitioning, a parallel version of SEUS (PSEUS). Section5 presents an analytic and experimental evaluation. Section 6 is a summary anddiscussion of current and future research.2 Application Domain: Snow EstimationThe NWS uses a spatial prediction model to derive gridded snow{water equivalentsover many hydrologic basins in the United States. The model relies on spatial correla-tion among the data and geostatistical techniques to estimate SWE where no observeddata exist. A detailed review of the SEUS methodology can be found in [Day90]. Thegridded snow{water equivalent is used as input to a snow ablation and accumulationmodel that uses observed temperature and precipitation to simulate snow cover con-ditions [And73]. [MSH+93] and [CDCC95] describe the use of ground and airbornedata to compute gridded estimates of snow{water equivalent and associated standarddeviates.
3



2.1 Data typesFrom a modeling perspective, the data used to interpolate gridded snow{water equiv-alent fall into two categories: point and line data. From a computational point ofview however, the data can be classi�ed into three types: areal, point and line data.2.1.1 Areal DataThe NWS divides the conterminous US into 12 hydrologic regions served by NWSRiver Forecast Centers (RFC). Each RFC region is sub{divided into as many as 800hydrological basins.Each basin in this study has a certain number of ground data collection points andairborne snow survey ight lines. Figure 1 depicts the relationship between all datatypes. The Colorado Basin RFC, for example, has over 200 NWS forecast basins. Wewill use notation Ri(i = 0; :::; r�1) to represent RFCs, where r is the total number ofregions. Basins will be represented using Ak(k = 0; :::; nb � 1), where nb is the totalnumber of basins in region i.2.1.2 Line DataLine data are SWE observations obtained from a network of over 1800 ight lines. TheNOHRSC uses low{ying aircraft (operated by NOAA's commissioned O�cer Corps)to measure natural terrestrial gamma radiation before the snow season and during thesnow season. The technique is based on 40K;238 U;208 T l isotopes radiation attenuationdue to the water mass in the snow cover [Fri82, PCV80, CV80, CVG85]. Each ightline is approximately 16 km long, 300 m wide. Each ight line is subdivided into oneor more segments.The technique used to estimate SWE for each basin Ak uses ight lines Fl(l =4



0; :::; nfl� 1), where nfl is the total number of ight lines that are within the basinitself or within adjacent basins.2.1.3 Point DataPoint data are SWE observations obtained from a ground-based network composedof snow course and automated snow data telemetry (SNOTEL) sites. [MSH+93] re-ported that the Natural Resources Conservation Service (NRCS) collects these grounddata at over 2000 locations across the west. Snow course data are obtained by sam-pling snow and measuring its water content. We will use Gm(m = 0; :::; ng � 1) todenote the ground points in each basin Ak, with ng being the total number of groundpoints used in a basin's SWE computation. Each basin Ak is divided into a grid ofpoints GRs(s = 0; :::; npt � 1) where npt is the total number of points in the grid.These are the points for which snow{water equivalent is to be computed. They willbe referred to as grid points. The number of grid points in each basin is proportionalto the basin size.2.2 SWE InterpolationSnow{water equivalent is estimated using simple kriging. [Cre91] describes ordinarykriging, or optimal prediction, as making inferences on unobserved values of a randomprocess Z(si). These values are modeled usingZ(si) = (Y(si)� �(si))=�(si); (1)where Y(si) is a non-standardized SWE value, Z(si) is a standardized SWE for bothground point and ight data. �(si) and �(si) are the mean and standard deviationof SWE at location si. 5



(b)(a)Figure 1: US map and relationship between data types (a) Basins withinone RFC (b) Ground and Flight line data (Courtesy Don Anderson, NWS,NOHRSC).Ground and airborne data are used to compute the best linear predictor of Z(su) :
Ẑ(su) = npt�1Xi=0 �iZ(si) (2)where �i are the simple kriging coe�cient estimates. The vector � is computedas follows: � = ��1Csu ; (3)where Csu = (cov(Z(su);Z(s0)); : : : ; cov(Z(su);Z(snpt�1)) (4)6



and � is the n� n matrix whose (i; j)th element is cov(Z(si);Z(sj)). The covariancesare modeled using a distance weighted function.For a basin Ak whose grid points are GRs; s = 0; :::; npt� 1, the mean squaredprediction error of the basin areal SWE estimate is derived by
�̂2Ysk = Pnpt�1i=0 Pnpt�1j=0 �̂(si)�̂(sj)(cov(Z(si);Z(sj))�CsiP�1Csj)(npt)2 ; (5)where �̂(sk) is the estimate of the standard deviation for a grid point sk. Moredetails about the interpolation can be found in [CDCC95] and [Cre91].3 Serial Implementation of SEUS: SSEUSThe computation of the estimated SWE at each grid point can be broken down intoseven steps, S1 through S7, shown in �gure 2. From these computations we alsoobtain the total basin SWE and associated uncertainty for each basin Ak. Thesesteps are representative of serial implementation such as serial SEUS(SSEUS).To determine the run time of the SEUS model as the characteristics of its instanceschange, we have used pro�ling, analysis, and measurement. Table 1 shows the numberof iterations for each of the modules S1 through S7. We have analyzed the code andexpressed the worst case number of iterations as a function of the number of groundpoints (ng), the total number of ight lines (nf), the total number of segments peright line (nsi), and the total number of grid points (npt) for each basin Ai.The time complexity shows the run time as a function of the number of groundpoints(ng), the number of ight lines (nf), the number of segments per ight line(ns), and the number of grid points (npt) for which snow{water equivalent is to becomputed. In our set{up, npt is always very large compared to nf , nsi and ng.7



S0: do S1, S2, S3, S4, S5, S6, S7 where:S1: Input[S1.1] input ground points data.[S1.2] input ight line data.[S1.3] input grid points data.S2: Standardize Means[S2.1] standardize ground point means.[S2.2] standardize ight line means.[S2.3] standardize grid point means.S3: Compute covariance Matrix (�)[S3.1] compute Cov(Flight lines , Flight lines).[S3.2] compute Cov(Flight lines , Ground points).[S3.3] compute Cov(Ground points , Ground points).S4: Compute inverse of covariance matrix(��1)S5: Compute Covariance Matrix with Grid points.[S5.1] Compute Cov(Flight Lines, Grid points).[S5.2] Compute Cov(Ground points, Grid points).S6: Compute Gridded and total SWE estimates.S7: Compute Total standard deviationFigure 2: Pseudo algorithm to compute a single Basin (Ai) SWE and totalvariance.For example, the small Animas river basin used by [CDCC95], contained 2681 gridpoints, 13 ground points and 4 ight lines. The numbers of segments per ight linewere 47, 62, 65 and 61 for ight lines 1, 2, 3 and 4 respectively. The number of gridpoints is proportional to the basin surface size. The relation npt� nsi � ng � nf ,8



Table 1: Serial SEUS worst and average time complexities for each module.Worst case is expressed as a function of actual variable ranges. Averagecase is expressed as a function of n which is a combination of all variableranges for a given basin Ak or a region Ri, n � min(npt; nsi; nf; ng).Module Worst case Average (n) Average (npt)S1 g(Pnfi=1 nsi + ng + npt) O(n2) O(npt)S2 g(Pnfi=1 nsi + ng + npt) O(n2) O(npt)S3 g(12Pnfi=1 nsi2 + ngPnfi=1+ng2) O(n4) O(1)S4 g(Pnfi=1 nsi + ng + npt) O(n2) O(npt)S5 g(nptPnfi=1 nsi + (ng)(npt)) O(n3) O(npt)S6 g(npt(nf + ng)) O(n2) O(npt)S7 g(12((npt)2(ng + nf)5) O(n7) O(npt2)holds for all basins having ight lines. Table 1 shows the time complexity only for asingle basin in one RFC. Using the same algorithm for multiple basins and multipleregions, the time complexity becomes an O(npt3) problem.Serial SEUS executable was pro�led using gprof on an HP 735-99Mhz runningHP{UX 9.05. Execution pro�les enabled us to see the number of calls to each moduleand its descendant functions. It also showed an approximation of the execution timefor each module and descendants. A partial listing of the results where nf and ngwere held constant is shown in table 2. The results suggest that computing the totalvariance represents the largest portion of the execution time. Our analysis of the timecomplexity concurs with the results of pro�ling.Examining the function that computes the total standard deviates (S7 is imple-mented as compute area std deviate() as shown in �gure 3), we found that wehave a time complexity largely dependent on the total number of grid points. Our9



Table 2: Results of gprof on the serial version of SEUS for small grid sizes(times are in seconds). Each value is a mean of 20 repetitions. A 300second sleep time follows each run to take into account di�erent systemloads. npt=100 npt=200 npt=1000 npt=2681Module T(sec) %Total T(sec) %Total T(sec) %Total T(sec) %TotalS1 0.186 16.87 0.189 6.23 0.203 0.33 0.200 0.05S2 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00S3 0.186 16.87 0.192 06.32 0.185 0.30 0.179 0.04S4 0.003 0.27 0.004 0.12 0.002 0.00 0.002 0.00S5 0.121 10.93 0.231 7.59 1.166 1.87 3.160 0.72S6 0.011 00.95 0.020 0.66 0.123 0.20 0.319 0.07S7 0.590 53.47 2.396 78.92 60.705 97.31 436.171 99.12Total 1.102 100.00 3.036 100.00 62.385 100.00 440.039 100.00experimental data show that this is actually an O(npt2) problem, since ng and nf arevery small compared to npt. We can take advantage of the symmetry and loop onlyon 12npt2. Also Since ��1 is a constant for any combination i; j, we can pre-computeCj��1 or Ci��1 before starting to loop on i or j.4 Parallel implementation of SEUS: PSEUSIn section 3, we have shown that the module S7, which is implemented by the com-pute area std deviate() function, is the slowest of all modules. This functioncomputed �̂2Ysk for each basin. The function was slightly modi�ed to run on a net-work of workstations, using a master/slave model.This model is used to execute compute area std deviate() in a distributed10



// Compute �̂ = sumsig .double compute area std deviate(double c, double *plat, double *plon,double *sig, double **sigmainv, double *Ci, double *Cj)fdouble sumsig,rho,dist;int i,j;sumsig=0for ( j=0; j < npt; j++ ) f// mul mat vec() is a matrix� vector routine.lambda = mul mat vec(sigmainv,Cj); // � = CjP�1for ( i= j+1; i < npt ; i++ ) f// Compute Distance between two points i with a latitude plat[i]// and a longitude plon[i] and a point j with latitude plat[j]// and a longitude plon[j].dist = distance( plat[j],plon[j], plat[i]; plon[i]);// Compute the modeled cov(Z(si); Z(sj))rho = c*exp(d*dist);if ( rho == c ) rho=1;// mul vec vec() is a vector � vector routine.sumsig = sumsig + sig(i)*sig(j)*(rho - mul vec vec(lambda,Ci));ggsumsig = 2*sumsig/n*n;return sumsig;g Figure 3: Serial Version of stub computing total variance for a basin.
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scheme on a network of workstations. In this model, one host was designated as themaster, while the rest of the hosts were designated as slaves executing tasks on behalfof the master. Figure 5 depicts the data ow among workstations. The algorithmused by the master consists of the serial modules S1, S2, S3, S4, S5, S6, S8, S9. S1through S6 are as explained in the serial implementation of gridded SWE. S8 and S9are shown in �gure 4.S8: Send the data to all hosts[S8.1] Con�gure the virtual machine[S8.2] Start all slaves with compute area std deviate()[S8.3] Broadcast all data required to compute �̂2YskS9: Receive partial results from each host[S9.1] Wait until all results are in[S9.2] Reassemble �̂2Ysk from all hostsFigure 4: Master modules involved in parallelism.Modules S1 through S6 output is used as input for module S7. Once the master isdone executing modules S1 through S6, it farms out S7 to the slaves. Each individualslave determines the physical domain that will constitute its computation domain andruns S7. The master and the slaves constitute a virtual machine. At any one time,all slaves run exactly the same copy of the code (S7). This task has an identi�er thatwe will use interchangeably with processor identi�er. The task identi�er for processori will be represented using Pi .Our goal is to compute �̂2Ysk as shown in section 3. We will decompose �̂2Ysk toobtain equation( 6) �̂2Ysk = 2PP�1Pi=0 	̂(Pi)npt2 : (6)12



	̂(Pi) is the non weighted portion of �̂2Ysk computed by processor Pi and P is the to-tal number of processors used to compute �̂2Ysk . 	̂(Pi) can be further re�ned to be ex-pressed in terms of the domain over which it is computed. The grid is partitioned row-wise to compute 	̂(Pi) = Prownk=rowiPnpt�1j=k+1 �̂(sk)�̂(sj)( cov(Z(si);Z(sj))�CskP�1Csj)Rows rowi and rown are the lower and upper bounds of the row values from thegrid. These are not necessarily consecutive as we will show.
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Figure 5: Master/Slave PSEUS model and data ow.Once each processor receives its data from the master, it computes 	̂(Pi) only overthe portion of the grid which constitutes its partition domain. Three strategies wereused to partition data among processors. These strategies are:(1) Contiguous RowBlocking(CRB), (2) Round{Robin(RR) and (3) Mirror{Image Round{Robin(MIRR).The reader can �nd a survey of other partitioning techniques for GIS data in [SL95,SRT+95, ISS86, KGGK94]. In all of our strategies, the basin is represented as annpt� npt grid space.
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// Computes bounds for consecutive rows assigned to a processor.getrows1(int Pi, int npt, int P, int *lower bound, int *upper bound )f // compute upper and lower bound range of rows// allocated to each processor Piif ( npt > 0 && Pi < P ) f*lower bound = Pi*(npt/P) ;if ( Pi < P - 1 )*upper bound = *lower bound + npt/P -1;else *upper bound = npt - 1; // last processor gets the restggFigure 6: Contiguous Row Blocking partition strategy: allocates equal rowsto all processors.4.1 CRBIn CRB strategy , we attempt to allocate an equal number of consecutive rows toeach processor using the stub of �gure 6. Using this scheme, each processor PifPi =0; :::; P � 1g is allocated (npt � P ) rows (where � is the integer division operator).Processor, PP�1, is allocated an additional npt � (P � 1)(npt � P ) rows. Figure7(a) illustrates this partition method. In this strategy, each processor Pi is allocatedrows Rj; Rj 2 [Pi(npt� P ); (npt� P )(Pi + 1)� 1]. The number of cells allocated toprocessor Pi is given by equation ( 7):Pic = ((npt� P )(2npt� (2Pi + 1)(npt� P )� 1))2 : (7)The total number of cells processed by the virtual machine is given by equation14



( 8). Tc = P�1Xi=0 Pic = npt(npt� 1)2 : (8)
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Figure 7: Partition of a 20 x 20 grid among 5 processors P0 through P4(a)Contiguous Row Blocking (b) Round{Robin (c) Mirror{Image Round{Robin.We use a grid size of 20 npt � 20 npt to illustrate this partition strategy. Weobtain the results shown in table 3. The results are also expressed as a proportionof the total number of cells processed (p = PicTc � 100).Table 3: Total number of cells and proportion allocated to each slave(npt =20; P = 5; Tc = 190).CRB strategy RR strategy MIRR strategyProcessor # of Cells % Total # of Cells % Total # of Cells % TotalP0 70 36.84 46 24.21 38 20.0P1 54 28.42 42 22.11 38 20.0P2 38 20.00 38 20.00 38 20.0P3 22 11.58 34 17.89 38 20.0P4 6 3.16 30 15.79 38 20.015



We note that this allocation scheme leads to a load imbalance where processorsdo not get equal work. Processors with a low identi�er have a high number of cellsallocated to them. In this example, when the virtual machine is con�gured with5 hosts, P0 processes 37 percent of the total cells while P2 processes only 3 percent.Thus a few processors do most of the computations while the others spend most of thetime waiting for the other processors with a larger cell allocation to �nish computingtheir portion 	̂(Pi) of �̂2Ysk .4.2 RRTo distribute the load among all slaves, CRB partition strategy was re�ned to obtainRound{Robin partition strategy. Figure 7(b) shows how the grid space is partitionedusing the algorithm of �gure 8. In this strategy, each processor Pi is allocated rowsPi + j(P ); j = 0; 1; : : : ; (npt� P )� 1. Each of the remaining r = (npt modulus P )rows are allocated to processors 0 to r � 1. Thus, each processor Pi is allocated thetotal number of cells given by equation ( 9):Pic = d(npt� 1� Pi)� P (d� 1)d2 + �(npt� 1� Pi � d(P )); (9)where Pi = 0; : : : ; P � 1d = npt� P� = 1; 8Pi < r� = 0; 8Pi � r.Table 3 shows an example of this allocation scheme for npt=20. We note asigni�cant improvement in load balance. The di�erence in cell allocation and thus inload of all processors in the virtual machine has been reduced but not eliminated.16



// Round--Robin Partition strategy: Given npt grid points and// P processors, get rows assigned for processor Pi. Rows// are stored in the array rows.getrows2(int Pi,int npt, int P,int *rows)f int d,r,j;if (P == 0 ) P = 1;d= (npt) / P ;r= (npt) % P ;for ( j=0; j < d; j++ ) frows[j] = Pi + j * P;gif ( r > 0 && Pi < r)rows[j++] = Pi + j*P ;rows[j]=-1;g Figure 8: Round{Robin partition strategy.4.3 MIRRWe further re�ne RR partition strategy to achieve further load balance with Mirror{Image Round{Robin partition strategy. MIRR allocates each processor Pi one rowfrom the top and its corresponding complement from the bottom of the grid. Thestub of �gure 9 shows the algorithm used for this strategy. Figure 7(c) shows thecell allocation to each processor. MIRR has e�ectively achieved the load balance asshown in table 3. 17



// MIRR partition strategy: Given npt grid points and P processors,// get rows assigned for processor Pi. Rows are stored in the// array rows.getrows3(int Pi,int npt, int P,int *rows)f int d,r,top,bottom, j=0, s=0, thisrow;if (P == 0 ) P = 1;d= (npt) / P ; r= (npt) % P ;top=Pi-P ; bottom=npt - 1 - Pi + P;rows[j]=-1;while ( s < d ) fif ( s%2 == 0 ) f top += P; thisrow=top; gelse f bottom -= P; thisrow=bottom; grows[j]=thisrow;j++; s++;gif ( r !=0 && Pi < r ) rows[j++]= top+P;rows[j]=-1;g Figure 9: MIRR partition strategy.5 EvaluationIn this section, we will evaluate the e�ects of the various data partitioning strategieson the computational and communication costs for parallel SEUS. We use speedupmetric (ratio of serial run times to the parallel run times) and the communication18



overhead as a measure of performance.5.1 Analytic EvaluationWe will restrict our analysis only to the slowest module (S7) which is the only modulethat was parallelized. Let Tcom and Tcalc designate the communications and thecomputations costs respectively for module S7. The computation cost is expressed asa function of the total number of grid cells allocated to each processor Pi. Figure 3shows the core of the function that models �̂2Ysk for module S7.5.1.1 Cost of Serial SEUSThe serial version assigns the entire upper half of the matrix to one processor. Thediagonal points (i; i) are not iterated over. The total number of cells over which weiterate is the count of all cells in every row minus the diagonal cells. Thus, for serialSEUS: Tcalc(SERIAL) = npt�1Xrow=0(npt� 1� row): (10)Using the summation for arithmetic series, equation( 10) yields the cost given by( 11):Tcalc(SERIAL) = 12(npt2 � npt): (11)The speedup metric for each of the three partition strategies is given byspeedup = Tcalc(SERIAL)Tcalc(PARALLEL) : (12)
19



5.1.2 Cost of PSEUS Using CRBUsing CRB data partition method as shown in �gure 7, the worst load is assignedto processor P0. In this case Tcalc is given by equation 13:Tcalc(CRB) = nptP �1Xrow=0(npt� 1� row) (13)= (2P � 1)npt2 � P npt2P 2 : (14)Using equations ( 11) and ( 14) , we obtain the speedup of equation ( 15) for CRB.speedup(CRB) � P 22P � 1 � P2 : (15)5.1.3 Cost of PSEUS Using RRIn the case of RR, each processor is allocated rows Pi + P j where j = 0; : : : ; PN � 1.The maximum load is seen for processor P0 = 0. ThusTcalc(RR) = nptP �1Xrow=0(npt� 1� P row) (16)= 12 nptP (npt� 1 + (npt� 1)� P (nptP � 1)) (17)= 12P (npt2 + (P � 2)npt): (18)If P does not divide npt exactly (npt modulus P 6= 0), P0 is allocated an addi-tional P � 1 cells: Tcalc(RR) = 12P (npt2 + (P � 2)npt) + (P � 1): (19)Applying this computation cost, we obtain the speedup for RR as given by equa-tion ( 20):for npt modulus P = 0speedup(RR) = npt2 � nptnpt2 + (P � 2)nptP: (20)20



for npt modulus P 6= 0speedup(RR) = npt2 � nptnpt2 + (P � 2)npt+ 2P (P � 1)P: (21)In both cases, speedup(RR) � P for very large npt.5.1.4 Cost of PSEUS Using MIRRIn the case of MIRR, row allocation to each processor progresses from both the topand the bottom of the grid to the mid-point. ThusTcalc(MIRR) = Tcalc(bottom) + Tcalc(top): (22)where Tcalc(bottom) and Tcalc(top) are equal to the number of cells assigned to P0from the bottom and top of the grid respectively. From the top, rows P0 + P j(j =0; : : : ; nptP � 1) are assigned. The rows allocated to P0 from the bottom are npt� 1�P0 � P j. We derive equations ( 23), ( ??) and ( 25) for P0 = 0.� npt modulus 2 P = 0: Tcalc(MIRR) = npt2 � npt2 P : (23)� npt modulus 2 P 6= 0 and npt modulus P 6= 0:Tcalc(MIRR) = npt2 � npt� 2 P2 P : (24)� npt modulus 2 P 6= 0 and npt modulus P = 0:Tcalc(MIRR) = npt2 + (P � 1)npt� 2 P2 P : (25)The speedup obtained for each case is given by equations ( 26), ( 27) and ( 28).21



� npt modulus 2 P = 0: Speedup = P: (26)� npt modulus 2 P 6= 0 and npt modulus P 6= 0:Speedup = P (npt2 � npt)npt2 � npt� 2 P : (27)� npt modulus 2 P 6= 0 and npt modulus P = 0:Speedup = P (npt2 � npt)npt2 + (P � 1)npt� 2 P : (28)In all cases, for large npt, speedup(MIRR) � P .Our analysis shows that both MIRR and RR achieve a better load balance andthus a higher speedup when compared to CRB. MIRR outperforms RR for smalleven nptP . MIRR and RR perform the same for nptP >> 1. Table 4 summarizes theresults of the computational cost and speedup resulting from using each of the datapartitionning strategies with PSEUS.Table 4: Costs and speedup of PSEUS for each partition strategy.Strategy Cost speedup speedupnptP >> 1 nptP �! 2SERIAL 12(npt2 � npt) 1 1CRB (2P�1)npt2�P npt2P 2 P2 P2RR 12P (npt2 + (P � 2)npt) P 2P3MIRR npt2P (npt� 1) P P
5.2 Communication OverheadIn this parallel implementation of SEUS, there are communications of data only be-tween the master and its slaves. No communications take place among the slaves.22
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Figure 10: Communications and computations timing for PSEUS.The master performs the initial computations then broadcasts the data to allslaves which in turn perform other computations and send back the results to themaster. The master assembles the results into �̂2Ysk . Hence the master is said to beblocking: it can not progress until all the results from all slaves have come back.Figure 10 illustrates the timing of events in this type of cooperative processing. Eachof the three partition strategies has the same basic communication cost Tcom = npt.Since the computation cost is O(npt2) and the communication cost is O(npt), thecommunication overhead is O( 1npt). Thus as npt becomes large, the overhead dropssigni�cantly.
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5.3 Experimental Evaluation5.3.1 Material and MethodsWe have implemented PSEUS using the Parallel Virtual Machine Libraries version3.3.6 [GBD+93]. PSEUS was tested on various platforms (Sun running Sun-OSor Solaris, Intel X86 running linux, IBM RS/6000 running AIX 3.25 and HP 9000running HP-UX 9.05). PSEUS was tested through a series of 9866 runs on HP9000/700 series connected to the NWS snow survey Ethernet based local area network.The number of grid points(npt) and the number of processors(P ) were among thefactors that we have varied during this study. Our measurements consisted of theexecution times for various modules and the values of �̂2Ysk that were compared witha version of SEUS implemented in SAS version 9.07 by Steve Carroll [CDCC95]. Wehave estimated the communication cost Tcom by subtracting the computation timeof �k from the total round-trip time which included the communication and the thecomputation times. We computed the communication overhead, � = TcomTcalc . We alsocounted the volume of network tra�c that was generated and the total number ofcollisions that occurred during our trial. Data analysis was performed using SAS 9.07on a SparcStation 10/54.5.3.2 Results and DiscussionFigure 11 shows the resulting increase in speed when PSEUS is distributed among1,2,3,4 or 5 processors for a grid size of 10000�10000. RR and MIRR strategies resultin a four fold speed increase, compared to the serial version. The increase in speedresulting from partition strategy RR and MIRR is signi�cantly higher than that ofCRB partition strategy. We also note that the increase in speed is a function of theproblem size and the number of processors used(�gure 12).24
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Figure 11: Relative speedup of PSEUS using three data partition strate-gies. The speedup is the ratio of PSEUS/SSEUS execution times fornpt=10,000.
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Figure 12: Speedup as a function of problem size and the number of pro-cessors for data MIRR partition strategy.
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Both RR and MIRR strategies however, require additional storage for row boundssince rows are not allocated in consecutive order. MIRR allocates rows in an unsortedorder. This may impact locality when non{associative cache is used. The algorithmcould be improved further by generating the rows in sorted order without additionaloverhead of a sort routine. CRB partition method has the disadvantage of load im-balance. However, this method may be useful in heterogeneous architectures. CRBor a variation of RR strategy (i.e., with di�erent stride values) can be used in com-bination with a weight function to allocate a larger number of cells to faster slavesand a lower number of cells to slower hosts or when executing PSEUS on networksof workstations connected via slower and busier data networks. It may also be usedto dynamically change the number of cells allocated to a given slave while it is exe-cuting by farming out portions of its computational domain when CPU load exceedsa certain threshold. The communication overhead � is shown in �gure 13 for MIRRwhen the total number of processors P = 5.We note that � is very high for small hydrologic basins and extremely small forlarge basins . However the smallest basin has 2681 grid points. Thus PSEUS scaleswell as the problem size and the resources allocated to solve it increase.6 ConclusionWe have shown that some of the spatial interpolations and geographic information sys-tems analyses can be parallelized e�ciently using distributed memory architectures.Various techniques from domain decomposition can be used to partition spatial dataamong processors to achieve higher performance of applications. A new partitiontechnique called Mirror{Image Round{Robin (MIRR) achieves load balance. Datapartitioning algorithms should be considered carefully in order to achieve acceptable26
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Figure 13: Communication overhead(�) as a function of the problem sizeand the number of processors.performance since there seems to be tradeo�s between the partition strategies. MIRRstrategy may be suitable for homogeneous architectures, while CRB and RR strategiesmay be more suitable for heterogeneous architectures.Our future work will focus on applying some of these techniques to spatial inter-polations and neighborhood analysis in an operational environment. A variation ofthe same techniques used in PSEUS could be applied to some GRASS routines (e.g.,to distribute data for CPU and I/O intensive operations). PSEUS is still a serialalgorithm, so we will be examining ways to change the computation algorithm itselfto exploit the parallelism. General purpose libraries for distributed spatial operationscould ease the path towards a high performance distributed GIS architecture.
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